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Using spectral data processing techniques based mainly on the statistical theory, some attempts are made to develop
a practical AES/XPS qualitative analysis software including the precise peak detection and the adequate assignment
of transition , and finally reasonable elements identification. The present software is applied to some typical spectra
data as well as the public VAMAS format data downloaded through the network from the Common Data Processing

System (COMPRO).

1. Introduction

We have been studying the automated
AES/XPS qualitative analysis for a few years[1]
and applying it to some available data at hand as
well as downloaded ones from the COMPRO
through the public network. To cope with the
various types of the COMPRO data which are
measured using not only pulse counting
detectors but also analog detectors, we have
made our theory also applicable for the data
using the analog detectors.

2. Peak Detection

In order to obtain excellent qualitative
anlysis results, it is necessary to make a
reasonable peak detection for a given AES/XPS
spectrum. Methods for automated peak detection
have been reported so far, but there are very few
papers written on the practical point of view.

We present here a simple method of
detecting peaks for AES/XPS spectra., and
check the validity of this method.

We assume that the spectrum is acquired by
using a pulse counting measurement system in

which the variance of a measured count is
roughly equal to the same measured count.
Using this property, we can easily evaluate the
variance curve for the second derivative of an
AES/XPS spectrum.

If y, represents the count accumulated in the
i-th position of the spectrum, the second
derivative curve d; of the spectrum is obtained
with the use of the Savitzky-Golay least-square
method as follows:

k=n
d, = ngym: > (1)

k=-n

where g, represent weighting coefficients
realizing the least-square fitting and the number
of coefficients is 2n+1 which roughly cover the
full width of a peak. The standard deviation of
the second derivative, o, is then calculated

utilizing the propagation of errors[2]:

k=n k=n l=n
0',.2=Z gk2 (Var),. o T2 Zzg &1 (Cov)i+k,i+1 . (2)
e ke=—nlzk

where (Var),,, is the variance of y,, and

(Cov) is the covariance of y,,, and y,,,. It is

i+k i+l

very difficult to evaluate Eq.(2) exactly.
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However, it is possible to assume
(Var)i+k .='yi+k’ (3)

by the counting mechanism and to neglect the
covariance terms by the randomness of noise.
Thus, we obtain

o= 8 Y- @)

k=-n
The criterion for detecting peak is given at
the local minimum point of the 2™ derivative
satisfying the following conditions:
d<—fo, )
where fo,is the noise threshold value, and at

the valley point i=j , d, takes a local

J

minimum (valley) value and y; a local maximum
(peak) value respectively. At this point, we
define relative standard deviation value s; as

T80, (©)

where s, may indicate the ‘plausibility’ of peak.
We usually set f a constant of 2~3 for well
defined data to obtain good results. However, for
some data which are downloaded from
COMPRO, we must set f much different values
as 10~200 for obtaining reasonable results.
Such data are not taken with the pulse counting
system, but converted from the analog data using
a technique such as voltage frequency
conversion (VFC). In such a case, we cannot
simply apply this counting statistics. However, it
is possible to assume at least a linearity between
the data obtained with analog and pulse counting

systems. Then, we can assume in stead of Eq.(3)
(Var)i+k -‘—_'_Cynk’ (7)

where C is an unknown constant for the analog
counting system and C=1 for the pulse counting
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system. This equation is the generalized version
of Eq.(3).

From purely statistical point of view, if all
the data are taken with a pulse counting
detecting system (C=1), we can assure the
detected peak is a genuine one for /=2 with a
probability of more than 95.4%, and for /=3 with
a probability of more than 99.7%. Inversely
speaking, if a peak is detected with a
probability, it may probably be a genuine peak
even if fis greatly different from 2~3 for the

similar

analog detecting system.

3. Assignment of Transitions
The next problem is how to properly assign

the transitions for the detected peaks. In order to
assign the appropriate transitions for each
detected peak with energy E, we extract
transitions with energy E from the energy
ordered transition table satisfying the following
condition:

E—w(E)SESE,+w(E), ®)
where w(E) is the energy dependent energy
width for searching the transitions. Ideally, w(E)
should be as narrow as possible. However, since
there is an energy shift on the chemical state of

-sample, or misalignment at the energy axis of

instrument, it is recommended to use an
appropriate value somewhat larger than the peak
width.

4. Element Identification

In the final stage of element identification, we
must decide the element contained in the sample
from information on the transitions selected for
the detected peaks. At present, we are using the
following information from the detected peaks
of a spectrum:
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(DPeak energy E, relative standard deviation
value s;, peak area S§(%) from the second
derivative spectrum, and local maximum £, and
local minimum P, values from the first
derivative spectrum.

@Transitions assigned to the detected peak.

@Energy domain of the measured spectrum.

From the above information, it is possible to

make the qualitative analysis according to the
following step:

DSelect element names from the transitions.

-1t is possible to impose some restrictions on
the selection of elements (e.g. setting the
minimum relative intensity factor for
selecting elements with major transitions).
@Apply the identification rule to each selected

element.

There is an identification rule for each
element. Each element identification rule which
has several sub-rules to confirm the existence of
the specified element includes the following
types of rules:

Positive rules to admit the existence of the
element.

These rules support the existence of the
element by evaluating the probability of
existence for its major transitions. If some
element that has only one major transition is
assigned to a peak, the probability of existence
for the element is equal to the probability of
existence P of the peak with relative standard
deviation s, and it is given by,

1 s 2
P=—=| e dx.
N27 -

Furthermore, if a certain element that has

©

two major transitions is assigned to two different
peaks with the probabilities of existence P, and
P,, the resultant probability of existence P of the
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element is given by
P=P,+P, —PPF,. (10)
@Negative rules to negate the existence of the
element.

These rules oppose the existence of the
element by considering the juxtaposition of the
above major transition with the other transitions
of the different elements. If the probability of
existence for the different elements grow larger,
and other inconsistencies are also found among
the intensities of the transitions or the shape
factors of the first derivative curve on the
element concemned, the probability of existence
for the element will become smaller.

In reality, due to the extremely difficult
calculations, we also use a more ambiguous
notion, the confidence of presence in stead of the
probability of existence to allow the approximate
or heuristic evaluations.

5. Analysis Example
Salt (NaCl) is a simple material but is liable
to be identified incorrectly——Na is often

identified as Zn, and Cl is sometimes identified
as B. Na is easily distinguished from Zn by
taking into consideration the existence of
transition NaKI.L-948, or by measuring the
energy difference between the transitions
NaKLL-979 and NaK1.L-915. On the other hand,
Cl is distinguished from B by comparing each
Jlocal maximum and local minimum value ratio
| P./P, | of the first derivative curve, which is
roughly 1 for Cl as compared 3 for B. Figure 1
shows the spectrum of NaCl and its 2™
derivative. The anlysis results are shown in
Tablel.
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Fig. 1 AES spectrum of NaCl and its 2* derivative with noise threshold curve.

PkEng(eV) PkArea(%) Sigma Pkieft PkRight Element Transition Energy(eV) Frac(%) Result

151 2.6 10.3  318.8 18 S LW00146 146 100 80
160 3.9 20.8 -67.1 -298.2 Gl LW00165 165 5 80
172 52.5 210.7 2115.3 -2789.4 Gl LW00176 176 100 80
260 6.5 1.6  2711.7 -431.1 ¢ KLL00263 263 100 80
503 2.1 6.3 152.8 —63.8 0 KLL00503 503 100 80
912 1.6 3.8 2335 74.8 Na KLL00915 915 10 80
941 5.9 15.2  413.3 -135.2 Na KLL00943 948 5 80
953 1.5 42 230.6 116 Na KLL00948 948 5 80
979 23.4 55.6 1022.4 -1220.4 Na KLLOO979 979 100 80

Table1 Qualitative analysis results of NaCl.
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